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Summary 

This work is directed towards the application of numerical methods to the 
solution of time-dependent flows of viscoelastic fluids. An Eulerian-La- 
grangian method has been developed in which time differences are carried 
out in the Lagrangian sense on a fixed mass of material occupying the 
control volume during a single time step. After transformation of the 
Lagrangian difference equations to the Eulerian description, the spatial 
dependence of the unknown fields is calculated by the finite element 
method. The backward Lagrangian time difference automatically builds 
exact upwinding into the scheme, and reduces the asymmetry of the matrix 
of coefficients. An important feature of this technique is its applicability to 
multi-mode fluids whose properties are characterized by a spectrum of 
relaxation times. In this paper the method is demonstrated with the problem 
of startup of Poiseuille flow for the Oldroyd-B fluid and for a multimode, 
rubberlike fluid. 

1. Introduction 

The Eulerian-Lagrangian scheme given in this paper is a further develop- 
ment of the ideas presented in earlier papers [1,2]. In most flow problems a 
spatial domain (control volume) defines the system into and out of which 
material enters and leaves. This situation appears to mandate the Eulerian 
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perspective, and the use of a Lagrangian formulation seems counterintuitive. 
Indeed, a purely Lagrangian numerical formulation inevitably runs into 
difficulty as time progresses since the original domain becomes highly 
distorted, as for example in Hassager [3]. In this paper the point of view is 
Eulerian over a finite time span, but during a short time step the Lagrangian 
viewpoint is adopted in order to carry out certain critical approximations. 
To understand this dual perspective it is useful to recall some features of 
each point of view. At any instant in time the Eulerian observer does not 
recognize material points; he observes only point values of fields defined 
over a spatial domain. Simultaneously the Lagrangian observer sees a 
continuum of material points which exactly coincide with the spatial do- 
main. The conservation laws apply to the material system, and are interpre- 
ted in the spatial domain by well-known mathematical transformations. In a 
continuous formulation a set of particles coincides within the perspective of 
both the Eulerian and Lagrangian observers at one instant of time. Over a 
finite interval of time the Eulerian observer will measure, among other 
things, the effects of a continuous inflow and outflow of material on the 
fields of the spatial domain. A Lagrangian observer can follow over a finite 
time At a set of particles that coincide with the control volume at time t. 

Provided the interval At is sufficiently small the distortion of this material 
system can be represented with relatively simple mathematics. The govern- 
ing Lagrangian equations are solved for their time dependence in a material 
reference system which is by definition independent of time. The approxi- 
mate Lagrangian equations are then transformed into their Eulerian equiv- 
alents which govern the spatial dependence of the fields defined over the 
spatial domain. After the Eulerian fields at time t have been obtained the 
“old” material system is relinquished, and the material which coincides at 
t + At with the control volume becomes the “new” system to be followed by 
the Lagrangian observer over a new time interval At. The repetition of this 
process allows the time evolution of the Eulerian fields to be traced in time 
by discrete intervals At. 

In the limit of vanishing At the above process reduces to the Eulerian 
case, and it is necessary to consider what advantages are to be gained from 
the Lagrangian time step. In the material description convected derivatives 
are absorbed into total time derivatives, and constitutive equations of the 
differential type become ordinary differential equations in time. Numerical 
methods for ordinary differential equations offer a simple approximate 
solution of the constitutive equation which achieves the uncoupling of the 
stress variables from velocity and pressure variables. The practical conse- 
quence of this feature is that the role of the stresses is reduced to that of 
auxiliary storage variables, and that the unknowns at any stage are the 
velocity and pressure, as in the Newtonian problem. This is to be compared 
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with the mixed method in which stresses, velocity and pressure are simulta- 
neous unknowns in the usual Eulerian finite element formulation. The 
enormous storage required for the huge matrices generated with the mixed 
method effectively prohibits the simulation of multimode fluids. The simula- 
tion of these fluids presents a difficulty beyond the practical one of storage 
capacity. Since the spectrum of relaxation times ranges over decades the 
partial stresses associated with each mode can be characterized approxi- 
mately in the same flow as being in the slow flow (Rivlin-Ericksen) regime 
all the way to the fast flow regime (small, fast displacements). It will be 
shown below that the Eulerian-Lagrangian approximations given in this 
paper are in fact Pad6 approximants which contain both the fast and the 
slow flow limits. Hence a single algorithm can be used over the whole range 
of time scales in the spectrum. Other important consequences of the 
Lagrangian time step are the incorporation of the concept of exact upwind- 
ing, and the symmetrization of the contributions of the stress terms to the 
matrix operator of the discrete system. 

Examples of the successful application of Lagrangian concepts to other 
systems can be found in Neuman [4], diffusion-convection equation, and in 
Huffenus [5], Navier-Stokes equation. In these examples the motivation is 
to avoid the pitfalls of upwinding in the discretization of the convective 
terms. Since the diffusional and the viscous terms are retained in their usual 
spatial forms the convected derivatives are approximated as Lagrangian 
differences along pathlines with accuracy of O(At). In [1,2] it is clearly 
demonstrated that for viscoelastic fluids this level of accuracy is insufficient 
since the leading terms of the Lagrangian stress approximations are them- 
selves of 0( At). In this work the Lagrangian approximation of the stress for 
linear viscoelastic fluids will be emphasized; it was shown in [l] how the 
Lagrangian step can be extended to nonlinear constitutive equations. 

2. Eulerian-Lagrangian analysis 

Earlier versions of the Eulerian-Lagrangian time marching scheme are 
described in [1,2], but no numerical examples were presented. The schemes 
used in this paper will be outlined below, and will be demonstrated with 
numerical experiments. In each case the schemes have been derived from a 
Gale&in statement in space and time in order to maintain consistency of the 
concept and to avoid ad hoc developments. This is more important in an 
Eulerian-Lagrangian formulation than in the purely Eulerian case for which 
many examples of time marching are to be found in the literature. In these 
examples time and space are treated separately by differences and by finite 
elements respectively, and usually the validity of this procedure is unques- 
tioned. In the Eulerian-Lagrangian case space and time are interconnected 
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other words, spatial operations will not be separate from temporal oper- 
ations. This is the reason for developing the temporal expansion from the 
Lagrangian point of view in terms in the Piola stress S. 

A most convenient material system consists of the material which occupies 
the spatial control volume at the present time t. This set of particles will be 
followed over the interval t - At/2, t + At/2. Integration with respect to 
time in (2.1) can be carried out with the integrand regarded as a function of 
X, and t, the material coordinates X being independent of time. Expansion 
of the integrand about the present time t gives, 

At u;{S2- J ,~,,(a’- b’)} dV= O(At’). 
v, 

(2-3) 

The “0” subscripts signify quantities referred to the X system. The Eulerian 
form of this momentum statement is easily recovered by means of the chain 
rule and the following properties of deformation gradients, (Truesdell [16]) 

(XI;C/J),k = 09 (X,J),,= 09 (2.4) 

Integration by parts of the stress term in (2.3) yields the material form of the 
usual Galerkin equation in which the stresses appear in virtual work terms 
within the volume and on the surface, 

/ { p,,( a’ - bi)ui + S%Q} dVO = J,, dA,SKiui + O(At’), 
v, 

(2.5) 

where dA, is the vector differential surface element referred to material 
coordinates. The material form is displayed to emphasize the role of the 
Piola stress for which approximations will be developed below. The usual 
Eulerian-Gale&in finite element statement of momentum balance is easily 
obtained by means of the chain rule and (2.2) 

/[p(n-+u+T:vu] dV=/ dA+u+O(At2). (2.6) 
V A 

When combined with the constraint of incompressibility this equation 
expresses the conservation laws in terms of Eulerian fields for the material 
which occupies the control volume at time t. 

3. Kinematical preliminaries 

Since the only primitive kinematic variable is velocity all other kinematic 
variables must be constructed from velocity fields. In several situations it 
will be necessary to extrapolate velocities forward in time from fields stored 
at previous times. Such extrapolations will be based on Eulerian time 
expansions of the kind 

V* = V’ + At w/at + ( At2/2) a2v’/at2 + * * * , (34 
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where At is any time increment and the partial time derivatives are ap- 
proximated by Eulerian differences to the degree of accuracy required, 

W/at = (V’ - V”)/At + 0( At) = (3Y’ - 4Y” + V “’ )/2At + 0( At’), 

(3.2) 

a’v’/at’ = (V’ - 21r” + V “’ )/At2 + 0( At). (3 -3) 
The primes ‘, “, “’ denote velocities at a spatial point at times t - At, 
t - 2 At, t - 3 At respectively. Formulae for variable time steps are used, 
but for simplicity only the case of equal time steps is given here. The 
subscripts * will denote velocities extrapolated forward in time, or when 
iterations are carried out within a time step it will denote the most recently 
calculated velocity at the current time. 

3.1 Displacements 

During the course of this work various methods have been tried for the 
calculation of displacements. The most obvious of these are based on 
Lagrangian expansions in time for the position of the particle. For example, 
formula (5.1) of Viriyayuthakorn and Caswell [6] was used in the earlier 
stages of this work. Such formulae taken over successive discrete intervals of 
time yield displacements with only Lagrange (Co) continuity. However, the 
velocity is a continuous Eulerian field and is simultaneously the Lagrangian 
time derivative of the displacement. Hence, it should be possible to compute 
displacements with Hermitian (C’) continuity. To this end the Hermitian 
cubic interpolation formula [7] for the relative displacement as a Lagrangian 
function of time is taken as a starting point, 

u(t) - u, = (u_ - U+)(2 - 34 + E3)/4 + [(v, - v-)(5’ - 1) 

+ (v, + 0([’ - <)] At/g> (3.4) 

where - 1~ ,$ < 1, and U, = U( f 1) and Y, = V( + 1) are the positions and 
velocities of the particle at times t and t - At respectively. The time 
derivative of (3.4) yields the temporal interpolation of particle velocity, 

V= (U_ - U+)(t2 - 1)3/(2 At) + (I/+ - V-)(/2 

+ (v, + v_)(3t2 - 1)/4. (3.5) 

At the Gauss points in time along the particle trajectory, 5 = &-l/a, 
evaluation of (3.5) gives 

u_ - U, = - (Vp+ + v,-) At/2 + O(At”), (3.6) 

I/+ - V_ = G( I$+ - v,_) + O(At3). (3 -7) 

Thus the trajectory Gauss point values, VP + = V( + l/n), predict the 
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displacement (3.6) of the particle at t - At relative to its current position. 
Equation (3.7) is a consistency relation between the end point velocities and 
the Gauss point values which guarantees Hermitian continuity at the end 
points. With the help of (3.6, 7) eqn. (3.4) can be converted into a 
displacement predictor in terms of velocities, 

U(t) - U, = - (Vp+ + I&)(2 - 36 + 6’) At/8 

+ [o(Vp+- v,-)(~2-l)+(v++ K&5’-5)] At/g. 

(3.8) 

Equations (3.6, 7 and 8) provide the basis for the determination of 
displacements with Hermitian continuity by means of the following iterative 
procedure: 
i) Assume that values of V,, V_, VP+, VP_ are in hand, V,, VP+, VP_ having 
been extrapolated forward in time by expansions of the type (3.1). 
ii) Predict the temporal Gauss point displacements from (3.8). 
iii) At the temporal Gauss points interpolate velocity fields at several 
previous times as required to furnish new values of V,+, VP_ by means of 
Eulerian time expansions (3.1). 
iv) Predict the endpoint displacement U_ - U, by means of (3.6), and 
interpolate the endpoint velocity, V_. 
v) Check the consistency condition (3.7) against a predefined tolerance; 
iterate if required since a new set of velocities is now in hand to begin again 
at (ii). Clearly, at the start of the process the velocities in (i) are not known. 
Starting with V, the Gauss points are estimated to 0( At) and U_ is likewise 
estimated from (3.6). This is sufficient to begin the iterative process at (i). 

3.2 Deformation gradients 

The direct method of differentiation of the particle position y at t - At 
with respect to its position x as t has been used in this work. This method 
was used in Viriyayathakorn [6] for very large deformations, and was found 
to give rise to large errors when accummulated over many time steps. 
However, in this work it is applied over a single time step only. Other 
methods have been developed (Malkus [8], Crochet [9], Papanastasiou [lo]) 
which avoid some of the large deformation errors; however, they are 
restricted to steady flow and have no obvious generalizations to fully 
three-dimensional deformations. The integration technique of Luo and 
Tanner [ll] is applicable to time-dependent flows, but has not been used in 
the work reported here. 
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3.3 Acceleration 

In unsteady flow the effects of inertia cannot be discarded even when the 
Reynolds number of the ultimate steady flow is negligible. Hence it is 
important to approximate the acceleration with the same attention to 
accuracy as will be developed for the stress. The Lagrangian time derivative 
of (3.5) in combination with (3.6) and (3.7) leads to the following formula 
for the acceleration of a particle at the current instant 

a(t)=((4+fiC)V-3[(1+C)Vp++(1-C)Vg_] 

+ (2 - fiC)v_)/At + O(At’>, (3.9) 

where C is a constant to be determined. It may be verified that the terms 
multiplied by C vanish when the Hermitian continuity condition (3.7) is 
satisfied. The ‘ + ’ subscript has been omitted in (3.9) from the velocity V(t) 
to signify its status as an unknown when a(t) is inserted into the momen- 
tum statement (2.6). The role of C now becomes clearer since in the 
acceleration term it determines the degree of implicitness, i.e. the relative 
weight of the coefficient of the unknown V to the coefficients of the knowns 
V g+, VP_ and V_. If accuracy is reduced to O(At) then (3.9) reduces to the 
simple Lagrangian difference formula, 

a(t) = (V- V-)/At + O(At). (3.10) 

This approximation has been used in Lagrangian formulations [5] of the 
Newtonian problem for which (3.10) circumvents the well-known difficulties 
of the numerical treatment of the convective terms which arise from the 
Eulerian representation of total derivatives. It will be seen below that the 
accuracy of (3.10) is inadequate for the analysis of viscoelastic flow. For the 
Newtonian problem it is doubtful that the overhead incurred in the compu- 
tation of particle displacements required in the Lagrangian formulation 
compensates for its advantages. For viscoelastic fluids the solution of a 
nonlinear constitutive equation simultaneously with the conservation laws is 
greatly simplified by the Lagrangian formulation, and thus compensates for 
the overhead involved. 

4. Stress approximations 

Two stress approximations have been tried in this work; they are nomi- 
nally of 0( At2) and 0( At3) respectively. For the lower order case the Piola 
stress at the current time is approximated by the Lagrangian backward 
difference 

S(t) = S_+ Ad(t) + O(At’), (4-l) 
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where S_ = s(t - At) is the stress for the same particle at the prior time 
level, and is regarded as known. Since the stresses are stored as Eulerian 
fields S_ must be constructed from (2.2). The dependence of S on the 
reference coordinates is suppressed since it is constant during particle 
motion. The approximations are designed to express the stress increment in 
terms of known stress and kinematic fields and the unknown velocity field. 
This is accomplished by use of the constitutive equation to eliminate the 
stress derivative g(t). For many differential models the stress derivative is 
explicitly given in the material description as, 

2 = %(Z, C-l), ZK’= JX;XfiTki, (4.2) 

where C-l is the Finger strain relative to the current configuration. For 
other models the elimination of the stress derivative is less obvious, and it 
may be necessary to define other auxiliary stress variables in order to 
proceed. For example, for the linear visco-elastic fluid with a spectrum of 
relaxation times it is necessary to define one stress field for each relaxation 
mode [l]. In this paper the approximation will be developed only for the 
Maxwell fluid for which the Piola stress is given by 

hS;=?g-‘-S+XS*LT, (4.3) 

where L is the spatial velocity gradient aV,Qx, and L!# is related to 6-l by 
BKi = _ &lKI,i 

,I* (4.4) 

Elimination of s’ in the expansion (4.1) with the constitutive equation (4.3) 
leads to 

D(At/x)s. (I- AtLT) = S_ + L&j At/X + O(At*), (4.5) 

D(U) = 1+ u + O(u2). (4.6) 
The retention of the factor D(At/A) rather than unity will be elucidated 
below. It follows from (4.5) that the Piola stress at the current time is given 
explicitly as 

+ AtS- !$. (LT - LT,) +&I At,x},D(At/x) + O(At”), 

V-7) 
where the deformation gradient ax/ay = I+ AtL, + O(At’), and the 
asterisk subscripts imply that the velocity gradient L = dV/&x is evaluated 
with the known velocity V*(x, t) defined in (3.1). By inversion of (2.2) the 
true stress for the particle at times t and t - At is given respectively by 

T(x, t) = T$$ - S( X, t)/J, T( y, t) = $4(X, t - At)/J_, (4.8) 

J_ = detl y,> 1. (4.9) 
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From (4.8) it follows that (4.7) can be transformed into the Eulerian form, 

L=-L=*) At] +Aq At/A /D(At/h) + O(At'). 

(4.10) 

In this result the incompressibility constraint has been anticipated by the 
setting to unity of the volume ratio in the transformations (4.8). Inspection 
of (4.10) shows that it is a useful and suitably linearized formula for the 
stress. In a time stepping scheme T_, L,, ax/ay are determined from stored 
stress and velocity fields at previous time levels, the unknown velocity 
V( X, t) appears in L and the strain rate A. Once V( X, t) has been 
calculated (3.10) can be used to construct the stress at time t, and thereby 
set the stage for the next time step. Although the development given above is 
directed toward the solution of the spatial field equations by the finite 
element method, eqn. (4.10) can equally be the basis for treating the spatial 
problem by finite differences. In the finite element method (4.10) is sub- 
stituted into the virtual work term of (2.6), and the unknown velocity field 
can be shown to satisfy the self-adjointness property which ensures only 
symmetric contributions to the matrix operator. It will be seen below that 
the same terms generate non-symmetric matrix contributions on certain 
boundaries. This symmetrization of terms which are strongly convective is 
one of the most remarkable aspects of the Eulerian-Lagrangian formulation, 
and is also found in Neuman’s [4] formulation of the convection-diffusion 
equation. The corresponding stress approximation for the Oldroyd-B fluid is 
easily obtained since it is the weighted sum of the Maxwell stress and the 
Newtonian stress, 

T=(l-a)T,+aqA. (4.11) 

The parameter 0 G a G 1 is the retardation/relaxation ratio and TM is the 
Maxwell stress with viscosity n and relaxation time A. In the case of the 
multimode linear viscoelastic fluid (Lodge [12] rubberlike fluid) with relaxa- 
tion spectrum (Xi, qi; i = 1, N) the partial stress q for each mode is a 
Maxwell stress, and hence will be given by (4.10) with the appropriate 
parameters hi, vi. It follows that for a multimode fluid, storage space must 
be provided for N partial stresses. However, since the stresses are not 
unknowns in the solution of the spatial field equations the size of the matrix 
of coefficients will be determined only by the size of the vector of unknown 
velocities and pressures regardless of the number of modes in the relaxation 
spectrum. 

Numerical experiments based on (4.10) were carried out early in the 
development of the Eulerian-Lagrangian method. Errors for problems hav- 
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ing analytical solutions were studied as functions of At, it was found that 
the convergence rate was 0( At) rather than 0( At2) as indicated in (4.10). 
While the quality of the numerical solutions is affected by several factors 
which will be discussed later, at least one type of error can be understood on 
the basis of the time development alone. To understand this it is sufficient to 
consider the following one-dimensional flow of a “fluid” which differs from 
the Maxwell fluid by a single term 

T+AT,-eh2TT;,=qW,, T= T(r, t), W= W(r, t), (4.12) 

where T is the shear stress, W the velocity, r the coordinate across the 
pathlines, and the subscripts stand for the partial derivatives with respect to 
r, t. To obtain a stress approximation for the fluid defined by this equation 
the starting point is again (4.1), but because of the second time derivative in 
(4.12) the term in At2 is retained. It can be shown that, if c = At/2h, the 
stress approximation for this fluid is identical to (4.10). In other words, the 
approximation (4.10) is the same for two fluids which differ by a term 
O(At). The character of this error is not easily classified; at long times it 
contributes a diffusive effect to the solution of the one-dimensional problem. 
In order to control this hidden error (4.1) is replaced by the more accurate 
formula for the stress at time t 

S=S_+(J;+$_) At/2+O(At3). (4.13) 

The Maxwell constitutive equation (4.3) evaluated for the same particle at 
t - At can be written with accuracy sufficient for use in (4.13) as 

A&_=&‘-S+AtS+U_.L:+O(At2). (4.14) 

The approximation here is the replacement of S_ with S - Atg + 0( At2) to 
achieve a more strongly implicit result in the final formula. The velocity 
gradient aV_/ay at (y, t - At) is denoted by L_. Elimination of !? and ,!?_ 
in (4.13) by means of (4.3) and (4.14) respectively yields 

D(At/QF(I-L= At/2) =S_.(I+L: At/2) 

+ [h_ + (1 + At/X)&] Atn/2X + 0( At’), (4.15) 

where D(U) = 1 + u + l/2 u2 = eU + 0( u’). (4.16) 

Postmultiplication by (I - LT A/2)-’ and retention only of terms correct 
to 0( At3) provides the desired explicit formula for the Piola stress at the 
current time, 

D(At/x)S=S_++ L= At/2). (I-L= At/2)-l 

+(b_+i+(I+L=At/2)q At/2h 

+ Jii(At/A)2q/2 + O(At3). (4.17) 
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Transformation of (4.17) into a form, analogous to (4.10), which expresses 
the true stress as a function of Eulerian fields begins with eqns. (B.6, B.7). 
Appendix B of [l] by which the deformation gradient relating points 
y=r(X, t-A ) d t an x = r( X, t) is obtained as the central product formula, 

F= (Z-L At/2)-’ . (I+L_ At/2) + O(At”). (4.18) 

This is the transpose of the postmultiplier of the first term on the right hand 
side of (4.17). Since (4.18) is nonlinear with respect to the unknown velocity 
V( X, t) it is linearized in the sense of spatial Newtonian iterations as follows 

FT= ax* 
-+$L’-LT’.) At/2+O(At3), 
aY 

(4.19) 

where it is assumed that the difference L* - LT, is at most 0( At). As in 
(4.10) the notation &/ay for the deformation gradients implies that y has 
been determined from known velocity fields. 

The second term in (4.17) is likewise linearized with respect to the 
unknown velocity V( x, t) as 

(~_+~)~(Z+L*At/2)=2&~~~ [I+ (LT- LT,) At/z] 

+ZbZ& +O(At") (4.20) 

consistent with (4.19), B - & is assumed to be at most 0( At), and 

2& = B_ + ir,; E =Z+L, At/2+O(At*). (4.21) 

The strain rate I$, and the deformation gradient ax/& refer to the midpoint 
in time t - At/2 with position z = r(X, t - At/2) along the particle trajec- 
tory, and are estimated by (4.21) with sufficient accuracy for use in (4.17). 
When (4.8) and (4.19-21) are used in (4.17) together with 

ax axT 2* A axT = ax.,_ axT .- 
2~‘~~*~= az’ o az ay . ay +A, + o(At*), (4.22) 

there results the following approximation for the true stress, 

. g - [Z-t (LT- LT*) At/21 
3-v 

+ A, . [ ( LT - L’*) At/21 77 At/2A 

+A(1 + At/?+ At/2X /@At/X) + O(At”) 
1 

in which H_ is the value at y, t - At of 

H= T-I-Aq At/2A. 

(4.23) 

(4.24) 
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Although the error in (4.23) is nominally 0(At3) it is clear that an error of 
0( At2) can be inferred by an argument similar to that given above to 
demonstrate the error O(At) hidden in (4.10). While the above derivation 
contains certain steps such as (4.14) which appear to be arbitrary the same 
result has been derived by a completely different approach not given here. A 
unique feature of both (4.10) and (4.23) is that the exact stress system for 
steady shearing flow is recovered in the limit At/X + co. The factor D( A t/h) 

in (4.6) and (4.16) plays the key role in ensuring this property which gives 
(4.10) and (4.23) the character of PadC approximants rather than algebraic 
approximations in powers of At. In the case of multimode fluids this 
property is essential since the Xi of the spectrum typically span many 
decades. If At is selected to be a small fraction of the mean relaxation time 
then At/hi will be very large for the modes of the spectrum with Xi -=K At. 

5. Incompressibility constraint 

The stress for the general linear viscoelastic fluid is written in terms of the 
Finger strain relative to the current configuration, 

’ T= -G,I+ 
J 

p(t - t’)C-‘(t, t’) dt’, (5.1) 

where p(s) = ImdG(s)/ds, G, = G(0) and G(s) is the relaxation function. 
The dependence of C- ’ on position is suppressed in these equations. For 
incompressible flow the stress is arbitrary to within a scalar isotropic 
pressure. In axisymmetric flow C;i is a principal value of the strain, and 
hence a scalar invariant. In a Gale&in formulation the volume ratio J is 
formally treated as a variable, and hence a valid scalar pressure for axisym- 
metric flow is then 

’ P= 
J 

,u(t - t’)C;‘(t, t’)J(t, t’) dt’. (5 02) 
--oo 

Upon addition of (5.2) to the isotropic part of (5.1) there results a Galerkin 
modification of (5.1) for axisymmetric motions, 

T=- G-i- { o 1’ p(t - t’)C,-,‘(t, t’)[J(t, t’) - l] dt’}I 

+ jr p(tlwt’)C;‘(t, t’) dt’, 
--oo 

where C;‘( t, t’) lies entirely in the r--z plane and has components 

i 

cr;‘-c,-,’ 0 CL1 
C;l= . 0 0 

. * c;;’ - c*i’ 

(5 *3) 

(5 -4) 
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The strain form (5.3) can be put into the strain rate form by means of an 
integration by parts, 

T= -I(P+ Go) + T2, (5.5) 

T2 = 
J 

t G(t - t’&l(t, t’) dt’, 
-CO 

p= t 
/ 

G(t- t’)C,-,‘(t, t’)[l -J(t, t’)] dt’ 
-* 

(5 4 

It follows from (5.4) that T2 is also an in plane tensor, and that the isotropic 
part of (5.5) is the only three-dimensional to T. For the Maxwell fluid the 
integrals (5.6) can be expressed as the differential equations, 

T2 + d’2 = qA,, P+hP= -qv *2), (5 *7) 

where A, is obtained by material differentiation of (5.4) with respect to 
time, 

A = 2@U/& - U/‘) au/a2 + aw/ar 
2 

( i 2(W/& - U/‘) * 
(5 -8) 

Here, U, W are the components of velocity referred to axisymmetric 
coordinates r, z, and the rate v denotes the upper convective Oldroyd 
derivative. In axisymmetric flow the approximations (4.10) and (4.23) devel- 
oped above are applied to the in-plane stress T2 rather than the whole stress 
tensor. A parallel development of (5.7b) for the Galerkin scalar pressure P 
reads 

P(x, t)={P_-v_.v_~At/2h-v.v(l+At/h)~At/2X}/D(At/A), 

(5 09) 

where P_ denotes P( y, t - At) and v _ denotes a/ay. In addition to the 
Gale&in pressure (5.9) derived from the constitutive equation an incom- 
pressible fluid admits a further pressure determined by the boundary condi- 
tions. Hence total stress for axisymmetric flow is written as 

-{p - [v .v(l+ At/A)17 At/2h]/D(At/h)}I+ T,. (5 JO) 

This form for the stress is obtained by addition of the in-plane stress to an 
isotropic stress consisting of (5.9) and an unknown scalar. Since P_ and 
v _ - u_ are known the first two terms in (5.9) have been absorbed into the 
unknown pressure p. 

The incompressibility constraint is slightly altered from its usual form 
since -p is effectively the Wcomponent of total stress. The constraint used 
in this work is 

O=v~u{h+(2u/r-v~u)[(l+At/~)~At/2~]/D(At/~)}, (5.11) 
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where h is the trial function for pressure, and u is the trial function for 
velocity with components u, w. Both U/T and v - u are scalar invariants of 
VU in axisymmetric flow. It should be realized that the Gale&in scalar 
pressure defined in (5.6) and approximated in (5.9), and the constraint (5.11) 
represent one of many possible ways of imposing incompressibility on the 
velocity field. The formulation used in this work is motivated by the desire 
to have the diagonal terms of T2 be stress differences relative to 

+A2*q At/2X : [(LT - ATT*) - vu] 

+(l+At,‘h),rIAt/2X(A,:vu+ZA.oA.u) -pv mu-hv ‘0, 

D= D(At/A), (5.12) 

where A, is the in-plane strain rate 

A _ 

i 

2au/ar au/az + aw/ar 
P- . 

i aaw/ag ’ 
2A.u= tr(Ar), A.u=!%+?!? 

ar aZ 

(5.13) 

and the components of H_ are evaluated at y, t - At from 

The stress and strain rate differences are defined by 

T,,, = T,, - Toe 2 L = Tz, - Go 

A 2rr = 2au/ar - 2U/r, Azrr = 2aw/a2 - 2U/r, 

(5.14) 

(5.15) 
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and the deformation gradient ax/ay is obtained by inversion of 

!!L 
ax 

(5.16) 

The virtual work 

p are interchanged with their respective trial functions U, h the 
virtual work (5.12) is unchanged. Hence in the finite element formulation 
virtual work contributes only symmetric terms to the matrix of coefficients. 

6. Initial conditions and boundary conditions 

The initial condition envisioned is the rest state with null stresses. The 
flow problems to be studied are initial value problems starting from rest and 
driven by overall pressure differences prescribed as functions of time. In 
order to be able to impose these conditions on interior flows it is necessary 
to consider situations in which inlets and outlets are configured to be regions 
of pure shearing flow or uniform rigid motion. Since the streamwise velocity 
is not specified on the inlet and outlet sections the prescribed pressure is 
imposed through the surface integral of the Gale&in statement (2.6). It is 
assumed that at the inlet/outlet sections the particle pathlines are normal to 
the cross-stream cut, and velocities have zero spatial derivatives in the 
pathline direction, consistent with the assumption of pure shearing flow. 

Here the development will be carried out for the case in which the 
inlet/outlet pathlines coincide with the z-direction of an axisymmetric flow. 
After imposing the pure shearing requirement of zero for U and U, the 
cross-stream velocity and the trial function respectively, the integrand of the 
surface virtual work term in (2.6) becomes, 

(6.1) 
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Consistent with previous notation W, W, and W_ are axial velocities; the 
unknown at t, the value at t extrapolated according to (3.1), and the value at 
r - At respectively. In a pure shear flow the particle velocity at y, t - At is 
identical to its value at X, t - At since W is unchanged along any pathline. 
In (5.16) the pressure p is prescribed and T;Z,, T,T , W,, W_ are known and 
thus all terms will contribute to the load vector except those containing the 
unknown W which will contribute to the matrix operator. Velocity boundary 
conditions are applied in the standard way. 

7. Finite element implementation 

The algorithms developed above can be implemented by adapting any 
available finite element code designed to compute steady flows of Newto- 
nian fluids. The essential new features which must be added are: 
i. the logic required to track particles and construct the distorted states of 

elements. 
ii. provision for the storage of several velocity and stress fields. 

In this work triangular elements are used in the Wilson arrangement of 
four to a quadrilateral as described in Nickel [13]. Within the triangles 
velocities and extra stresses are interpolated as quadratic functions of the 
space variables, and the scalar pressure is interpolated linearly. At element 
boundaries the velocities and pressures are C, continuous functions whereas 
the stresses are C_, discontinuous functions. 

The algorithms for the stress summarized in (4.10), or (4.23) combined 
with (4.11), the momentum statement (2.6) and the volumetric constraint 
(5.11) lead to a global system of algebraic equations of the form 

where V, p are the vectors of unknown nodal velocities and pressures, and 
V,, V_, ax/ay, T_ are integration point values of quantities derivable from 
previously computed nodal values of velocity and 
the extrapolated value of V, and is obtained from 

v* = Y*( v’, Y”, V”’ ). 

Here V’, V”, V “’ are the stored nodal velocity 
time levels. For every element the nodal positions 
from the algorithm based on (3.6, 7) described 
typical elements is depicted in Fig. 1. Note that 

stress. The velocity V, is 
(3.1-3) in the form, 

(7.2) 

vectors at three previous 
R, 2 at t - At are found 
above; the distortion of 
by computing the nodal 

displacements the mesh at t - At is constructed to have the same edge 
compatibility as the original mesh. Once the nodal displacements are com- 
puted the velocity and stress at t - At, V_ and T_ are interpolated from the 
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Spaiial Mesh 1 

Fig. 1. Typical material element distortion at time t - At, relative to t. 

fields in storage. Even though the stresses are stored as discontinuous 
functions their interpolation along the edges of the distorted elements 
creates an effectively continuous stress field at t - At. The deformation 
gradient i3x/ay is computed by inversion of (5.16); the differentiations are 
carried out with R, 2 taken as quadratic functions of r, z. 

Since (4.10) or (4.23) and the acceleration (3.9) are linear in V the global 
system (7.1) is likewise linear in V, p, and after appropriate application of 
boundary conditions can be solved by standard methods for the field 
V(x, t). The creation of a linear system (7.1) has been accomplished, with 
the exception of (4.19), by means of Lagrangian expansions in time. It 
should not be concluded that the effect of convective nonlinearities, which 
so dominate the Eulerian formulation, have vanished completely. This is 
verifiable by iteration on (7.1) with V, replaced by the most recently 
determined V(x, t). In the case of linear viscoelasticity experience indicates 
two iterations per time step to be sufficient. When the constitutive equation 
(4.2) is nonlinear these iterations within a time step are used to solve the 
approximation equivalent to (4.10) or (4.23) which are then non-linear. This 
is dealt with in [l]. 

Once V( X, t) has become stationary the next task is the updating of the 
stress field. In (4.10) and (4.23) V, is taken as equal to V, and they become 
explicit formulae for the stress T(x, t) in terms of known quantities. 
Following the same procedure used to set up the system (7.1) the stresses are 
computed in each element at the seven integration points used in the spatial 
integration. Since the stress interpolation is discontinuous at element 
boundaries the nodal stresses can be determined element-by-element. In the 
work of this paper the six nodal values are obtained by a least squares fit of 
the seven spatial Gauss point values. In an earlier formulation the stresses 
were interpolated as linear, discontinuous functions, fitted by least squares 
to values calculated at the six points of the formula which had been 
employed for spatial integration. Experiments with linear interpolation of 



235 

the stress gave fairly good results in the flow problem described below. 
However, convergence was limited to relatively low values of the relaxation 
time. From the few analytical solutions available for viscoelastic fluids it is 
clear that stress fields will generally require higher order interpolation 
compared to the corresponding Newtonian problem. The updating of the 
stress completes the time step, and sets the stage for the determination of the 
velocity at the next time level. 

8. Startup of Poiseuille flow 

, Although the algorithm described above is valid for two and three-dimen- 
sional flows, in this paper, numerical results will be presented only for the 
startup of Poiseuille flow. Analytically this is a standard intial value problem 
for the axial velocity W as a function of P, t. For the Oldroyd-B fluid in the 
case of a suddenly imposed, constant pressure gradient, the analytical 
solution was obtained by Waters and Ring [14], and in what follows results 
labelled as analytic have been computed from their solution. Finite element 
results were obtained for the fully two-dimensional implementation of the 
Eulerian-Lagrangian scheme as described above. For the Oldroyd-B fluid 
(4.11) the retardation/relaxation ratio, a, determines the relative impor- 
tance of elasticity. The purely elastic (Maxwell fluid) and the purely viscous 
(Newtonian fluid) cases correspond to a of 0 and 1 respectively. The general 
performance of the finite element code was found to improve as a -+ 1, and 
to degrade in the elastic limit a + 0. This degradation also depends on the 
Deborah number (De) computed from 4X(1 - a)V/R where V is the mean 
velocity at the steady state and R the tube radius. This definition corre- 
sponds to the ratio of half the wall normal stress to wall shear stress at the 
steady state. The level of inertia is measured by Reynolds number (Re) 
computed from pVR/q. The implicitness coefficient in (3.9) was determined 
to be -1.5 by minimizing the error in the Newtonian problem. To avoid 
varying too many parameters, values have been chosen which demonstrate 
the capabilities of the numerical scheme. Most of the results have been 
computed at the standard values of De = 4, Re = l/2. In the elastic limit 
the solution for these values exhibits the characteristic oscillatory response 
to the point of flow reversal. 

For the standard values of De and Re and a = 0.1 Figs. 2, 3 and 4 show 
at various times shortly after startup the profiles of axial velocity, elastic 
shear stress and elastic normal stress components of TM defined in (4.11). 
The spatial mesh used in all of these calculations consists of a 4 by 4 
arrangement of quadrilaterals on a tube of unit radius and length 3, and 
contains about 290 V, p unknowns. Except for the results in Fig. 5 all 
calculations are based on the 0(At3) approximation for the elastic stress, 
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Oldroyd-B Fluid 

7 Axial Velocity 

1 

6~~~~ 

T 

o-o-,J- 

Pz = -8 

a= 0.1 

Re = 0.5 
TIME/h 

l 0.1 

0 0.4 

0, 

0 0.1 0.2 0.3 0.4 0 5 0.6 0.7 0.6 0.9 1 

Radius 

Fig. 2. Axial velocity (W) distribution during startup of an Oldroyd-B 
pressure gradient imposed suddenly at l= 0. 

Fluid, a = 0.1; 

equation (4.23). For the gtresses double values at the common nodes are 
plotted without averaging. It can be seen that on the scale of these plots the 
discontinuities are barely perceptible. Note that shear stress has been 
normalized with qV/R and the normal stress with the steady state shear 
stress 41)V/R. Centerline values of the velocity and wall values of the 
stresses are plotted as functions of time of Fig. 5 for the stress approxima- 
tions (4.10) and (4.23). Generally, agreement with the analytical solution is 
better for the 0( At3) approximation. A more revealing measure of perfor- 

Oldroyd-B Fluid 

Elastic Shear Stress 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

-0.5 -’ 

At/t/h= 0.05 

-1.5 -. 
TIME/?, Pz = -8 

. 0.1 
a = 0.1 

0 0.2 
Re = 0.5 

-2.5 .- De I 4 
. 0.3 

0 0.4 

_3,5 1 _ Anabtic 

Radius 

Fig. 3. Elastic shear stress [TM_] distribution during startup of an Oldroyd-B Fluid, u = 0.1; 
pressure gradient imposed suddenly at time = 0. 
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Oldroyd-B Fluid 

Elastic Normal Stress 

3 -- = 
At& 0.05 

TIME/?. Pz = -a 
2 .. l 0.1 a = 0.1 

/ 0 

0 0.2 Re = 0.5 

.0.3 De = 4 

0 0.4 
1 .. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.6 0.9 1 
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Fig. 4. Elastic normal stress[ TMzrr /TM,z(l, oo)] distribution during startup of an Oldroyd-B 
Fluid, a = 0.1; pressure gradient imposed suddenly at time = 0. 

mance is plotted in Fig. 6 where a composite error is plotted against time. 
This error is composed from 

where the 8 differences are taken relative to the analytical solution. The 
nodal values for the whole domain, at every time level, are surveyed for their 
maximum from which Fig. 6 has been constructed. The dependence of the 

Oldroyd-B Fluid 

Wall Elastic Normal Stress 
t : ; _& 

Centerline Velocity 

-- - ” 

Wall Elastic Shear Stress 

.-.-.-=-=-.-i-i_._,,.~_._~_.-.-.~--.-.-.-.~-.-.-.-. 
I 

-60 1 2 3 4 5 

TIMEX’. 

Fig. 5. Centerline velocity [W(O, t)], wall elastic shear stress [Z’,,(l, t)] and wall elastic 

normal stress [T,,,,(L t)/TMrz(L oo>l vs. time during startup of an Oldroyd-B fluid, 
a = 0.1; pressure gradient imposed suddenly at time = 0. Solid markers: 0( At3) stress 
approximation (eqn. (4.23)). Hollow markers: 0( At2) stress approximation (eqn. (4.10)). 
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Oldroyd-B Fluid 

Composite Error 
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. . 
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De = 4 44.(1-a) 

0 2 4 6 8 10 

‘I‘lhl L/h 

Fig. 6. Composite error (eqn. (8.1)) during startup of Oldroyd-B fluids for various values of 
a; pressure gradient imposed suddenly at time = 0. 

error level on the retardation/relaxation ratio clearly demonstrates that the 
major source of error originates in the elastic stress as might be expected. At 
a = 0.1 convergence is marginal at De = 4, and improves at lower De or 
larger a values. 

The capability of handling multimode fluids is demonstrated with the low 
density polyethylene spectrum used by Luo and Tanner [ll]. In order to 
make meaningful comparisons with the startup problem for the single mode 
case the relaxation spectrum, given in Table 1, is scaled with the mean 
relaxation time and the total viscosity. The latter are then chosen so that in 
the steady state the stress system is identical to that of the single mode fluid, 
i.e. De and Re are based on the mean relaxation time and the total 
viscosity. Fig. 7 shows the centerline velocity for the jump start and the same 
flow conditions used to produce Fig. 5. It is seen that the oscillatory 

TABLE 1 

Spectrum for multimode fluid from Ref. 11. X = 58.7 s and TJ = 5,110 Pas 

i h/A 9i/V 

1 1.70E+ 1 1.96E-2 
2 1.70E+O 3.53E - 1 
3 1.70E- 1 3.70E- 1 
4 1.70E- 2 1.92E- 1 
5 1.70E- 3 5.23E - 2 
6 1.70E-4 l.l5E- 2 
7 1.70E- 5 1.86E - 3 
8 1.70E-6 2.53E-4 
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6 Mode Fluid 

Axial Velocity Pz = -a 
‘2T Re = 0.5 l 6 mode Numerical 

10 

8 

6 

4 

De = 4 

Oldroyd-B Analytic Solutions: 

Al - = - = 0.05 a 0 (Maxwell) 
h .,,11.*1...,111. a _ 6.4 

---- a E 1 (Newtonian) 

Fig. 7. Centerline velocity (W(0, t)) d uring startup of an 8-mode Fluid; pressure gradient 
imposed suddenly at time = 0. Superimposed are the Maxwell, Newtonian, and Oldroyd-B 
(a = 0.4) analytical solutions. 

response which characterizes the single mode fluid is greatly attenuated by 
the spectral dispersion of the elastic response of the material. 

The startup problem contains some inherent difficulties for numerical 
analysis, and these effects are amplified in the important limit of vanishing 
inertia at finite Deborah number. In the purely elastic case the startup 
problem is characterized by the propagation of shear waves which initiate at 
the walls, propagate inwards, and reflect from the centerline. The amplitude 
(vorticity jump) of these waves attenuates as exp( -t/2a). For the Maxwell 
fluid u and A are identical so that wave effects will dominate the solution 
for most of the transient. For the multimode fluid u -=E A; hence the waves 
will have only a fleeting existence. In Fig. 8 velocity profiles are shown for 
the Maxwell fluid (a = 0) for the conditions of Fig. 2. It is obvious that the 
numerical scheme does not simulate the flow in the viscinity of the discon- 
tinuities, and this is also evident from the error growth with time shown in 
Fig. 6. The wave speed is given by dC,/p, and hence is infinite in the limit 
p + 0. This means that in the regime of small inertia waves reflect with 
essentially infinite frequency. Because of this the analytical solution [14] is 
difficult to plot for the Maxwell fluid; for the Oldroyd-B fluid at small Re 
and De of 4 the numerical solution is compared to the analytical solution in 
Fig. 9. The very rapid rise of the centerline velocity from zero to a maximum 
is omitted for clarity. The numerical solution effectively jumps over this 
phenomenon with little loss of accuracy. For the multimode fluid the results 
of a similar numerical calculation are displayed in Fig. 10. The time scale is 
logarithmic to permit the response at very small times to be examined 
closely. The smallest time step is two orders of magnitude greater than the 
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Maxwell Fluid 
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Fig. 8. Axial velocity (W) distribution during startup of a Maxwell Fluid; pressure gradient 
imposed suddenly at time = 0. 

smallest relaxation time. During the initial phase the numerical solution is 
evidently dependent on the magnitude of At. It can be seen that after an 
initial oscillatory response for the first few time steps the solution ap- 
proaches a common, smooth curve which is independent of the time steps. 
These results suggest that at times comparable to the smallest relaxation 
time the centerline velocity will rise almost instantaneously to a very high 
peak. The analytical curve for the Oldroyd-B fluid for the same Re and De 
is plotted for comparison. There is no value of the retardation/relaxation 
ratio which brings these curves into agreement. 

Oldroyd-B Fluid 

Pz = -6 
a = 0.1 
Re = 0.5e-6 
De = 4 

At 
- = 0.01 
x 

- Analytic 

Wall Elastic Normal Stress 

~_._.-m-n-~- 
*._~_)._.~_._C.-.~-~.-~.~~~-~-~-u 

._H-=- 

l -•-._ _ 
Centerline Velocity 

l C~-rH-C.-N-.~-.-r.-‘-.-.-~~.-.-.-.-._~._._~.-._.-.~ 

0 0.5 1 1.5 2 

TIMES. 

Fig. 9. Centerline velocity [W(O, t)], wall elastic shear stress [T,,=(l, t)] and wall elastic 
normal stress [T,,,,(l, t)/T,,=(l, m)] vs. time during startup of an Oldroyd-B fltid at low 
Re, a = 0.1; pressure gradient imposed suddenly at time = 0. 
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6 Mode Fluid 

Oldroyd-B Analytic Solution 

0.1 J I 
0.0001 0.001 0 01 0.1 1 10 100 
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Fig. 10. Centerline velocity (W(0, t)) during startup of an 8 Mode Fluid at low Re; pressure 
gradient imposed suddenly at time = 0. Superimposed is the Oldroyd-B (u = 0.02) analytical 
solution. 

The same initial condition on the pressure gradient has been used in all of 
the cases presented above. For viscoelastic fluids in the low Re limit this 
initial condition gives rise to a singularity whose manifestation is extreme 
for the Maxwell fluid. Alternatively, imposing the mean velocity gives rise to 
a pressure singularity [15]. Since any numerical scheme will degrade in the 
vicinity of a singularity it is of interest to find out if a milder initial 
condition can eliminate some of the extreme behaviour. The initial value 
problem of Waters and King [14] has been solved for the case when the 

8 Mode Fluid 

Axial Velocity 
5 . 6 mode Numerical 

Oldroyd-B Analytic SokItionS: 

4 - a = 0 (Maxwell) 
At 
- =o.os 

**...#11.111**1*‘ e p 0.4 

3 I - a = 1 (Newtonian) 
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0 
0 1 2 3 4 5 

TIME/h 

Fig. 11. Centerline velocity (W(0, t)) d uring startup of an 8-mode Fluid; pressure gradient 
imposed exponentially. Superimposed are the analytical solutions for the Maxwell fluid, 
Oldroyd-B fluid [a = 0.41, and Newtonain fluid with A = 2 R’p/q. 
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Fig. 12. Centerline velocity [W(O, t)] during startup of an 8-mode fluid at low Re; pressure 
gradient imposed exponentially. Superimposed are the analytical solutions for the Maxwell 
fluid, Oldroyd-B fluid [a = 0.41, and Newtonian fluid with X = 2 R’p/q. 

pressure gradient is P,[l - exp( - t/h)], t > 0. This loading rate ensures 
against the sudden imposition of pressure. The curves in Fig. 11 display the 
time evolution of the centerline velocity for the multimode fluid; in the 
pressure loading term X is the mean relaxation time. The analytical response 
for the Maxwell fluid, the Oldroyd-B fluid and the Newtonian fluid are also 
plotted for comparison. Note that the viscous time scale is used to accom- 
modate the Newtonian case. For the Maxwell fluid profiles of velocity 
similar to Fig. 8 appear to be smooth which means that the vorticity jump at 
the wave fronts has been reduced nearly to the vanishing point. This is 
consistent with the absence of cusps in the time evolution of the centerline 
velocity displayed in Fig. 11. For the Newtonian fluid the pressure loading 
rate parameter X is arbitrary, and has been chosen to be the same number as 
in the viscoelastic case. Figures 11, and 12 show the response of single and 
multimode fluids to be distinct. In the absence of a singular startup 
condition the Maxwell fluid response is oscillatory with frequency increasing 
as Re + 0. The only essential difference between the gradually and the 
suddenly imposed pressure conditions is the amplitude of the oscillations 
which initially approaches infinity for the jump start. For the multimode 
case the response to a regular loading rate is very nearly viscous. Viscoelastic 
overshoot such as is shown in Fig. 7 is to be expected only from a singular 
loading rate. 

9. Conclusion 

An Eulerian-Lagrangian scheme for the calculation of time dependent 
flows has been derived in detail for the case of the Maxwell fluid, the 
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Oldroyd-B fluid and for the rubberlike fluid. The method has been demon- 
strated numerically for the startup of Poiseuille flow. It has been shown how 
Eulerian statements can be generated from Lagrangian time expansions 
which allow the solution of the constitutive equation to be separated from 
the solution of the conservation laws. In this work expansions of O(At3) 
have been obtained without the appearance of second gradients as suggested 
in earlier work [l]. The implications for numerical simulation are that since 
V, p variables are obtained separately from stress variables the vector of 
unknowns in the spatial problem is the same for single mode or multimode 
fluids. In this work the stresses are updated explicitly, element-by-element, 
after the spatial equations have produced the velocity field in each time step. 

The present formulation is not satisfactory in the strongly elastic case. 
Two causes have been identified. The first is that for the Maxwell fluid the 
transient is dominated by shear waves which are not modelled with the finite 
elements used here. The second has been identified as the method for fitting 
nodal stresses from Gauss point values in the stress updating step. It can be 
shown that the least squares fit is biased, and gives rise to axial oscillations 
of stress in the one-dimensional problem studied in this work. Numerical 
experiments were carried out in which the amplitude of the oscillations was 
controlled by axial stretching of the elements by factors of 10, 100, . . . . 

With this artifice it was possible to maintain convergence for the Maxwell 
model at De values as high as 40. Improvements in the representation and 
the updating of the stresses are under investigation, and will be reported in 
future work. 

Although the results presented here are limited to a one-dimensional flow 
problem some insights have been gained about the differences between the 
response of single and multimode fluids. It follows from Figs. 11 and 12 that 
the Maxwell fluid has a singular limit as Re + 0 at constant De. The 
tendency towards oscillations at finite frequency is independent of the initial 
conditions. Sirnilar behaviour is found for the jump start for which the 
initial amplitude is unbounded as Re + 0. In contrast, the multimode fluid 
response to a gradually applied load is nearly viscous. A singular loading 
rate, such as the jump start, gives rise to an overshoot type of response. 
Provided the startup is regular the response of the multimode fluid can be 
simulated with a single mode Oldroyd fluid with a suitable choice of 
retardation parameter. However, this will not work in the important low Re 
limit if the loading rate is singular. In general, the single mode models with 
small retardation times appear to greatly exaggerate elastic effects, and do so 
especially in the nearly inertialess regime. 
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